Partition algebras

نویسندگان

  • Tom Halverson
  • Arun Ram
چکیده

where the LGLn(λ) are irreducible GLn(C)-modules and the S λ k are irreducible Sk-modules. The decomposition in (0.1) essentially makes the study of the representations of GLn(C) and the study of representations of the symmetric group Sk two sides of the same coin. The group GLn(C) has interesting subgroups, GLn(C) ⊇ On(C) ⊇ Sn ⊇ Sn−1, and corresponding centralizer algebras, CSk ⊆ CBk(n) ⊆ CAk(n) ⊆ CAk+ 2 (n), which are combinatorially defined in terms of the “multiplication of diagrams” (see Section 1) and which play exactly analogous “Schur-Weyl duality” roles with their corresponding subgroup

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Partition Algebras for Complex Reflection Groups

In this paper we study the representation theory of two partition algebras related to complex reflection groups. The colored partition algebras, Pk(n, r) introduced by Bloss [2] and the algebras, Tk(n, r) introduced by Tanabe [26]. In particular, we describe the decomposition of these algebras in terms of irreducible representations.

متن کامل

Representations of Vertex Colored Partition Algebras

The G-vertex colored partition algebras Pk(x, G) and extended G-vertex colored partition algebras b Pk(x, G) have been recently defined in [16] and [17] respectively and they have been realized as the centralizer algebras of the groups Sn × G and Sn respectively, under the action on W ⊗k, where W = Cn|G| and C is the field of complex numbers. In this paper, we use the representation theory of t...

متن کامل

The Classification of Affine SU ( 3 ) Modular Invariant Partition Functions

A complete classification of the WZNW modular invariant partition functions is known for very few affine algebras and levels, the most significant being all levels of SU(2), and level 1 of all simple algebras. In this paper we solve the classification problem for SU(3) modular invariant partition functions. Our approach will also be applicable to other affine Lie algebras, and we include some p...

متن کامل

The $q$-analog of Kostant's partition function and the highest root of the simple Lie algebras

For a given weight of a complex simple Lie algebra, the q-analog of Kostant’s partition function is a polynomial valued function in the variable q, where the coefficient of q is the number of ways the weight can be written as a nonnegative integral sum of exactly k positive roots. In this paper we determine generating functions for the q-analog of Kostant’s partition function when the weight in...

متن کامل

On Spin Models, Triply Regular Association Schemes, and Duality

Motivated by the construction of invariants of links in 3-space, we study spin models on graphs for which all edge weights (considered as matrices) belong to the Bose-Mesner algebra of some association scheme. We show that for series-parallel graphs the computation of the partition function can be performed by using seriesparallel reductions of the graph appropriately coupled with operations in...

متن کامل

Cellularity of Diagram Algebras as Twisted Semigroup Algebras

The Temperley-Lieb and Brauer algebras and their cyclotomic analogues, as well as the partition algebra, are all examples of twisted semigroup algebras. We prove a general theorem about the cellularity of twisted semigroup algebras of regular semigroups. This theorem, which generalises a recent result of East about semigroup algebras of inverse semigroups, allows us to easily reproduce the cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eur. J. Comb.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005